The Solar Sinter
by Markus Kayser

| 16 comments

Show RCA 2011: German designer Markus Kayser has built a 3D-printing machine that uses sunlight and sand to make glass objects in the desert.

The Solar Sinter by Markus Kayser

Called The Solar Sinter, the device uses a large Fresnel lens to focus a beam of sunlight, creating temperatures between 1400 and 1600 degrees Celsius.

The Solar Sinter by Markus Kayser

This is hot enough to melt silica sand and build up glass shapes, layer by layer, inside a box of sand mounted under the lens.

The Solar Sinter by Markus Kayser

Solar-powered motors move the box on an x and y axis along a computer-controlled path and a new layer of sand is sprinkled on top after each pass of the light beam.

The Solar Sinter by Markus Kayser

Light sensors track the sun as it moves across the sky and the whole machine rotates on its base to ensure the lens is always producing the optimum level of heat.

The Solar Sinter by Markus Kayser

Once all the layers have been melted into place the piece is allowed to cool and dug out from the sand box.

The Solar Sinter by Markus Kayser

Kayser developed the project while studying on the MA Design Products course at the Royal College of Art.

The Solar Sinter by Markus Kayser

Graduate exhibition Show RCA 2011 continues in London until 3 July.

The Solar Sinter by Markus Kayser

See all our stories about Show RCA 2011 »

Here are some more details from Kayser:


In a world increasingly concerned with questions of energy production and raw material shortages, this project explores the potential of desert manufacturing, where energy and material occur in abundance. In this experiment sunlight and sand are used as raw energy and material to produce glass objects using a 3D printing process, that combines natural energy and material with high-tech production technology. Solar-sintering aims to raise questions about the future of manufacturing and triggers dreams of the full utilisation of the production potential of the world’s most efficient energy resource - the sun. Whilst not providing definitive answers, this experiment aims to provide a point of departure for fresh thinking.

The Solar Sinter by Markus Kayser

In the deserts of the world two elements dominate - sun and sand. The former offers a vast energy source of huge potential, the latter an almost unlimited supply of silica in the form of quartz. Silicia sand when heated to melting point and allowed to cool solidifies as glass. This process of converting a powdery substance via a heating process into a solid form is known as sintering and has in recent years become a central process in design prototyping known as 3D printing or SLS (selective laser sintering). These 3D printers use laser technology to create very precise 3D objects from a variety of powdered plastics, resins and metals - the objects being the exact physical counterparts of the computer-drawn 3D designs inputted by the designer. By using the sun’s rays instead of a laser and sand instead of resins, I had the basis of an entirely new solar-powered machine and production process for making glass objects that taps into the abundant supplies of sun and sand to be found in the deserts of the world.

My first manually operated solar-sintering machine was tested in February 2011 in the Moroccan desert with encouraging results that led to the development of the current larger and fully automated computer-driven version - the Solar-Sinter. The Solar-Sinter was completed in mid-May and later that month I took this experimental machine to the Sahara desert near Siwa, Egypt, for a two week testing period. The machine and the results of these first experiments presented here represent the initial significant steps towards what I envisage as a new solar-powered production tool of great potential.

The Solar Sinter by Markus Kayser

The machine

The Solar-Sinter machine is based on the mechanical principles of a 3D printer.

A large Fresnel lens (1.4 x 1.0 metre) is positioned so that it faces the sun at all times via an electronic sun-tracking device, which moves the lens in vertical and horizontal direction and rotates the entire machine about its base throughout the day. The lens is positioned with its focal point directed at the centre of the machine and at the height of the top of the sand box where the objects will be built up layer by layer. Stepper motors drive two aluminium frames that move the sand box in the X and Y axes. Within the box is a platform that can move the vat of sand along the vertical Z axis, lowering the box a set amount at the end of each layer cycle to allow fresh sand to be loaded and levelled at the focal point.

Two photovoltaic panels provide electricity to charge a battery, which in turn drives the motors and electronics of the machine. The photovoltaic panels also act as a counterweight for the lens aided by additional weights made from bottles filled with sand.

The Solar Sinter by Markus Kayser

3D printing process with sand and sunlight

The machine is run off an electronic board and can be controlled using a keypad and an LCD screen. Computer drawn models of the objects to be produced are inputted into the machine via an SD card. These files carry the code that directs the machine to move the sand box along the X, Y coordinates at a carefully calibrated speed, whilst the lens focuses a beam of light that produces temperatures between 1400°C and 1600°C, more than enough to melt the sand. Over a number of hours, layer by layer, an object is built within the confines of the sand box, only its uppermost layer visible at any one time. When the print is completed the object is allowed to cool before being dug out of the sand box. The objects have rough sandy reverse side whilst the top surface is hard glass. The exact colour of the resulting glass will depend on the composition of the sand, different deserts producing different results. By mixing sands, combinatory colours and material qualities may be achieved.

The Solar Sinter by Markus Kayser

Machine and man

With the scenario of a single person’s utilisation of the machine in the desert, I play with ideas of how an individual could use the machine to produce objects.

In this first instance the creation of artefacts made by sunlight and sand is an act of pure experimentation and expression of ‘possibility’, but what of the future? I hope that the machine and the objects it created, stimulate debate about the vast potential of solar energy and naturally abundant materials like silica sand. These first experiments are simply an early manifestation of that potential.

The Solar Sinter by Markus Kayser

Machine and community

In the context of a desert-based community, the Solar-Sinter machine could be used to create unique artefacts and functional objects, but also act as a catalyst for solar innovation for more prosaic and immediate needs. Further development could lead to additional solar machine processes such as solar welding, cutting, bending and smelting to build up a fully functioning solar workshop.

The vibrant and global ‘open-source’ community is already active in developing software and hardware for 3D printers and could play a key role in the rapid development of these technologies. The Solar-Sinter could simply be the starting point for a variety of further applications.

The Solar Sinter by Markus Kayser

Machine and manufacture

In 1933, through the pages of ‘Modern Mechanix’ magazine, W.W. Beach was already imagining canals and "auto roads“ melted into the desert using sunlight focused through immense lenses. This fantastical large-scale approach is much closer to reality today, with ‘desert factories’ using sunlight as their power a tangible prospect. This image of a multiplicity of machines working in a natural cycle from dusk till Dawn presents a new idea of what manufacturing could be.

The objects could be anything from glass vessels to eventually the glass surfaces for photovoltaic panels that provide the factories power source… and, as Mr. Beach imagined 78 years ago, the water channels and glass roads that service them.

The Solar Sinter by Markus Kayser

Dreaming of architecture

Printing directly onto the desert floor with multiple lenses melting the sand into walls, eventually building architecture in desert environments, could also be a real prospect.

Experiments in 3D printing technologies are already reaching towards an architectural scale and it is not hard to imagine that, if partnered with the solar-sintering process demonstrated by the Solar-Sinter machine, this could indeed lead to a new desert-based architecture.

  • James

    I made a solar-powered flashlight for cave exploration.

  • thedesigner

    Good one, but I think bit too much,interm of cost just to produce product that actually can be done by local craftman easily

    • xtiaan

      do you know how much it costs to produce craft glass objects? you have furnaces that have to run 24/7 (usually natural gas powered) or your crucible cools and cracks and you have masses of liquid glass everywhere.

      I hardly think that solar power could cost more than natural gas running all day everyday (infact Id say the tech shown here is damn near free comparatively speaking) or that poor "local craftsmen" in desert areas could easily replicate the traditional manner of glass production as it is a highly skilled craft requiring both alot of money and a certain amount of technological infrastructure.

  • xtiaan

    this is amazing, a few more pix of finished products would have been nice though. Im imagining armies of robots solar sintering desert cities! yay!

  • yuc

    One should invent an Archimedes Award and give it to this man.

  • Martin

    absolutely brilliant

  • http://www.dailygrail.com Red Pill Junkie

    I would like to see pics of finished products, and know how long do they take to be made.

  • Lisa @fakearchitects

    Maybe glass will be the new plastic when we run out of oil? Just a thought…

  • Hercule Poirot

    Remembers me of the machines built by belgian artist Rafaël Opstaele in the seventies and eighties. They were also beautiful giant objects, like his flashy yellow lacquered wooden (!) press for golden medals or the slowest poems-printer ever made – also on solar energy if I remember well. He was the founder, amongst others, of the Mass Moving group, famous for its friendly provocative performances.

  • blameblakeart

    This is an unbelievable article, and to any nay-sayers about the relevance of Solar Power, we have to start Somewhere!

    In 50 years we'll look back upon this and Kayster's contribution with affection and "Pioneering" spirit – This process is a part of the building blocks of innovation, a link in the DNA "Structure of Thought™" that is essential to any evolving mechanism.
    http://www.theStructureofThought.com

  • hannes

    Best in class! Phenomenal project.

  • Horst Zuckerfrei

    The best and most holistic installation i have ever seen. Great!

  • Dan

    Just what Africa needs right now – more empty glass bowls

    • http://www.driftdesign.co.uk Mike

      Well if people could easily produce glass bowls they would be able to sell them and provide themselves with another income stream. Bowls can cost a lot of money comparitvly speaking. Then think if they starting making jewlery and cups and bricks, that's a lot of new incomes streams for that community.

  • http://trotyar.com.ua troto

    Omg, it's already here. Future is today

  • http://nottinghamarts.org Terry Sullivan

    Amazing technology, but for making smooth and functional glass objects I’m thinking using solar generated electricity to run a glass furnace and annealer would be the way to go at this time.

    Yes, you have to store enough energy to run the furnace at night. At least at the minimum temp of around 1500 degrees Fahrenheit. And yes I do know about the opperation as we have built and run a hot glass shop at Nottingamarts.org for many years.